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A perturbation theory of heteronuclear diatomic molecules based on the isoelectronie 
homonuclear molecules is developed for calculating the moleeular energy, equilibrium inter- 
nuclear distance, dissociation energy, and electric dipole moment. 

The theory is applied to the isoelectronie molecules CO and N2. The uncoupled Hartree. 
Fock approximation to the first-order perturbed wavefunction is determined by the varia- 
tional method. The calculated molecular energy of CO is too low and the dipole moment is too 
large in magnitude. However, the calculated polarity is in agreement with the results of 
recent Hartree-Foek calculations at the equilibrium distance. 

Molekiile aus zwei verschiedenen Atomen werden als gestSrte gleichkernige, isoelektroni- 
sche Molekiile behandelt, um Energie, Gleichgewiehtskernabstand, Dissoziationsenergie und 
Dipolmoment zu berechnen. 

Das Verfahren wird auf das Paar CO, I~ angewandt. Die ungekoppelte Hartree-Fock~ 
~N/~herung fiir die gestSrte Funktion erster Ordnung wird durch Variation bestimmt. Fiir CO 
errechnen sich eine zu niedrige Energie und ein zu groBes Dipolmoment, dessen Richtung mit 
der aus neueren Hartree-Fock-Rechnungen fiir den Gleiehgewichtsabstand erhaltenen fiber- 
einstimmt. 

On d~veloppe un proc@d~ off les mol@cules diatomiques h6t~ronucl6aires sont trait@es 
eomme mol6eules homonucl6aires iso~leetroniques perturb~es, et on caleule l'~nergie mol~- 
culaire, la distance d'6quilibre des noyaux, l'6nergie de dissociation et le moment dipolaire. 

Ce proc6d@ est appliqu6 & gO et N 2. L'approximation gartree-Fock non-coupl~e pour la 
fonetion d'onde perturb~e de premier ordre, est d@termin6e par variation. L'~nergie calcul6e 
pour CO est trop basse, le moment dipolaire 6rant trop haut. Cependant, sa direction s'aecorde 
aux r~sultats de calculs Hartree-Fock r~cents pour la distance d'6quilibre. 

I. Introduction 

The mot iva t ion  for this inves t igat ion is the desire to compare the molecules 
CO and  N2, to unde r s t and  their  differences, and  in  par t icular  the electric dipole 
m o m e n t  of CO and  its sign. The str iking s imilar i ty  of the two molecules can be 
seen from Tab.  l :  the bond  distances differ by  only 3 per cent, and  al though the 
dissociation energies differ by  about  13 per cent, the to ta l  molecular  energies are 
wi thin  3.5 per cent of each other. The polar i ty  of the dipole m o m e n t  of CO is very 
difficult to determine,  bu t  was deduced indirect ly  to be C- O + from microwave 
measurements  of ro ta t ional  magnet ic  moments  and  J = I ~- 0 ro ta t ional  frequen- 
cies for various isotopic species of CO [18]. However,  despite the ini t ia l  support  of 
this result  by  RA~SIL'S Har t ree-Foek  calculat ion [16] using a m i n i m u m  basis set, 
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Table 1. Experimental properties o/ nitrogen and carbon monoxide 

/~ (A) E~ (H) D~ (eV) k~ (106 dyne cm -~) #~ (D) 

~2 1"0943 --109.586 b 9.902 a 2.296~ 0. 
CO IA28t a --113.377 b 11.242~ t.906 a 0Al8 (C-O+) d 

a See reference [7]. 
b See reference [16]. 
o A. G. GAYDO~, Dissociation Energies, revised edition (1953) : D~ is corrected for zero- 

point energy. 
a See references [1, 18]. 

the recent Hartree-Fock calculations with enlarged basis sets [15, 9] appear to be 
converging to a computed value of the dipole moment  of CO equal in magnitude, 
but  opposite in sign, to the accepted experimental value [18, 1]. NESBET [15] 
pointed out, in a critical discussion of the experimental determination [18] of the 
polarity of the CO dipole moment,  that  the sign of the polarity has not in fact 
been established definitely by  experiment. 

In  this paper, a perturbation theory of heteronuclear diatomic molecules based 
on the isoelectronic homonuclear molecules is developed. The heteronuclear mole- 
cule is regarded as the isoelectronie homonuclear molecule perturbed by  a transfer 
of charge from one nucleus to the other. The situation is favorable for such an 
approach since the perturbation operator is simply a sum of one-electron terms. 
The molecular energy, equilibrium internuclear distance, dissociation energy, and 
electric dipole moment  are considered in Section I I .  In  Section I I I  the Hartree- 
Fock approximations for calculating the effect of one-electron perturbations are 
briefly discussed. In  Section IV  the applicability of the perturbation theory is 
carefully considered and the theory is applied to the molecule CO based on ~q~. 

II .  General Theory for Diatomie Molecules 

1. Molecular energy 

Let the heteronuclear molecule A B  of interest have nuclear charges 

ZA = Zo (i § 4),  (2.1) 

ZB = Z0 ( i  - 2 ) ,  

and be taken to be the Z-perturbed condition of the isoelectronie homonuclear 
molecule CC with nuclear charges Z o = (ZA + ZB)/2. The electronic Hamiltonian 
of the Z-perturbed heteromolecule can be written 

~ f  = ~ f 0  + 2 V  (2.2) 

where ~ 0  is the unperturbed electronic Hamiltonian and Z is the parameter  

2 = (Z A -- ZB) / (ZA "~ Z B ) .  (2.3) 

The perturbation V is a sum of one-electron operators 

v - 1  = -- rAi ) (2.4) 

where rAi and rBi are the distances to the electron i from the nuclei A and B 
respectively. An important  property of V is tha t  it is antisymmetric with respect 
to inversion or interchange of nuclei A and B (u-symmetry). 
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The wavefunction ~P for a particular nondegenerate electronic state and inter- 
nuclear distance R of A B  can be expanded in the familiar Rayleigh-Schr6dinger 
power series in 2 

T = T(~ + 2T(1) + 0 (2 2) . (2.5) 

KATo [11] has proved that  the series converges for ~ perturbation such as Eq. (2.4), 
at least for small enough 2. 7 t(~ is the w~vefunction of the homonuelear molecule 
for the same electronic state (i.e., that  which is adiabatically correlated by chang- 
ing 2) and internuclear distance R. We shall take 7 ] and ~y(o) to be normalized so 
that  Re (T(1), T(o)} = 0. The electronic energy expansion is 

W =  W( ~  ~W ( 2 ) + 0 ( 2  4) (2.6) 

where the terms in odd powers of 2 vanish by symmetry*. W(~ is the electronic 
energy of the unperturbed homonuclear molecule, and the second-order energy 
coefficient W(2) is given by 

W(z) = (kP(~ V T (~)} . (2.7) 

The molecular energy E of a diatomic molecule is the sum of the electronic energy 
W and the nuclear repulsion energy; 

E(R)  = W(R)  + ZA Z B / R .  (2.8) 

Hence by using Eqs. (22) and (2.6), we obtain 

E -- E(~ = 22 (W(2) - Z~/R) + 0 (24). (2.9) 

Since W(2) must be negative for a ground state, it follows thgt the molecular energy 
E of the heteronuclear molecule must be lower than that  of the homonuclear mole- 
cule E(~ at least for small 2. 

2. Equilibrium internuclear distance 

Let R 0 be the equilibrium internuclear distance for the homonuclear molecule 
CC; that  is 

(dE (~ (dE(~ 
d R / o  =- \ dR/I~=Ro = 0.  (2.iO) 

Similarly let Re be the equilibrium internuclear distance for the heteronuclear 
molecule A B ;  that  is 

dE 

Differentiating Eq. (2.9) with respect to R we have 

dE dE(~ "2/dW(2) Zg~ 
- )t _ ~ -  + R~ / + 0 (2 ~) . 

dR dR 

I f  we put R = Re and expand dE(~ about R 0, we obtain 

o r  

(2.11) 

(2.12) 

-- (Re- -  Ro) \ dR 2 ]o q- "'" [\  dR ]s R2,] § "'" ' (2A3a) 

[(dw% zg] + o (z,) (2.lab) Re - R0 = -- V0 [ \  dR / .  + R~] 

* This can be seen by observing that the energy must be invari~nt to un interchange of 
nuclei A and B, i.e., 2 -+ -- ~. 

28* 
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where k o = (d ~ E(~ is the force-constant of the homonuclear molecule. Thus 
Re - R 0 is of order ~2, and the sign depends on the relative magnitude of the two 
terms in the square brackets; dW(2)/dR will be negative in general because W (2) is 
negative at R = oo and becomes zero at R = 0. 

3. Dissociation energy 

The dissociation energy of the heteronuclear molecule A B ,  De, and that  of the 
homonuclear molecule, D 0, are given by  

De ::  E ( ~ )  - E (Re) (2.14) 

D O = E(0) (oo) -- E(0) (R0). 

Expanding E (Re) about R0, we have 

(dE)  + . . .  (2.i5) E(Re) = E(Ro) + (Re - Re) -d~ o " 

Using Eqs. (2A2) and (2.13), we get 

E (Re) = E (R0) § (9 (Ad). (2.16) 

Hence making use of Eqs. (2.9) and (2A6), we obtain 

Do - De = A ~ [AW (2) (R0) - Z~/Ro] § (9 (A 4) (2.17) 
where 

AW(2) (R0) = W(2) (R0) - W(~) (oo). (2.18) 

Since AW(2) (R0) > 0 in general, the sign of D o - De depends on the relative 
magnitude of the two terms in Eq. (2.t7). 

4. Electric dipole moment 

The dipole moment  of the heteronuclear molecule A B  is 

(#> = (~, #}/~> = (W(~176 § 2 ~ (T(1), #T(~ § & (~3) (2.19) 

where A is taken to be on the z-axis at R/2 and B to be at -- R/2, }I j is assumed to 
be real for simplicity and 

N 

# = -- ~ zi § A Z  o R .  (2.20) 
4=1 

The dipole moment  expression can only contain odd powers of 2 since it changes 
sign if  ~ changes sign. Hence, using Eq. (2.20), we get 

<#> = 2 (Z 0 R + 2 (kY(1), #T(~ + (9 (~a) ; (2.21) 

the dipole moment  has been defined to be negative for A -  B+. 
The terms in Eq. (2.21) tend to cancel since (W(1),/~r/(o)> is almost certainly 

negative. To see this consider the spectral expansion in terms of the unperturbed 
eigenfunctions ~Pn(~ : 

<~](1), ~a}/O'(o)> = n~O ~ n  " (2.22) 

The important  point to notice is tha t  both V and/~' ( = -- ~ zi) have u-symmetry,  

and tha t  V/~' > 0 everywhere. This means tha t  Von #no > 0 for the lower excited 
states, and could only be negative ff the transition density ~n0 has different signs 
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where V is the largest and where # is the largest. This is only likely to occur for 
highly excited states, if at all. Since E o - E n  < 0, we conclude tha t  (}p(1), #,~p(0)}, 
the dipole due to the electronic charge shift caused by  the Z-perturbation, is 
negative. This conclusion is supported by  the Uns61d approximation for the sum 
in Eq. (2.22), which replaces the increasing denominators E o - -  E n  by tha t  of the 
smallest non-vanishing term, say E 0 - El;  

(kg(1), #}p(o)} (T(~ V/~ T(~ (2.23) 
- E o  - -  E 1 

This approximate expression is necessarily negative. 
To decide the sign of (#} it is therefore necessary to perform an accurate 

calculation of the electronic term. I t  is interesting to note tha t  by DALGAm~'O'S 
interchange theorem [4, 8] this can be written in the alternative form 

(~(~), #~g( ~ = (g(~), V ~(0)} (2.24) 

where ZO) is the solution of the equation 

( ~ 0  -- E(~ Z (I) + (# -- 2Zo R) ~(o) = 0 .  (2.25) 

Since both V and # are one-electron operators the interchanged form does not 
possess any obvious advantage. 

5. S c h w a r t z  d i s c r i m i n a n t  

A simple check on the validity of merely taking the leading terms in the power 
series for W -  W(~ in Eq. (2.6) and for (#} in Eq. (2.2i) is provided by  the 
Schwartz-like inequality 

,~o  ~ E0 ---- En ~ 0  E0 - -  E~ >- n 0 ~  ' (2.26) 

Using Eqs. (2.6), (2.2i) and (2.22), we obtain 

2 s -- 2 A 
or  

W(~ -- W > ()~Zo R-(~))z (2.27b) 
- -  2c~ 

where c~ is the polarizability of the homonuclear molecule parallel to the axis, 
given by  

= - 2 ~ E o ~ E  ~ . (2.2S) 
n r  

This inequality is checked below for the case of CO and N 2. 

III .  The Hartree-Fock Approximation 

In  this section the calculation of the effect of a one-electron perturbation on an 
atomic or a molecular system is discussed. I t  has already been pointed out tha t  the 
perturbation V [Eq. (2.4)] is a sum of one-electron terms. Since a comprehensive 
review paper  on the calculation of the effect of one-electron perturbations on atoms 
has recently appeared [3] the uncoupled I tar t ree-Fock approximation [2, 10] alone 
will be briefly discussed. 
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The uncoupled Hartree-Foclc approximation 
The difficulty in solving the equations for the first-order wavefunctions in the 

coupled Hartree-Fock approximation [3] is due to the coupling terms which arise 
from the demand for self-consistency in the presence of the perturbation V. A 
simpler set of equations for the first-order wavefunetion can be obtained by 
neglecting the effect of the perturbation on the Hartree-Foek potential. The 
perturbed equation for this so-called uncoupled Hartree-Fock approximation is 
then 

(H o + ~ V -  W) T = 0  (3.i) 

where H 0 is the Hartree-Fock Hamiltonian for the unperturbed system. By expand- 
ing Eq. (3.1) in powers of~, we obtain the set 

(H 0 -- W(~ T(~ = 0 (3.2) 

(H 0 - W(o)) ~//0) + (V - W(~)) ~(0) = 0 .  (3.3) 

Because of its one-electron character, V can be written in the form, 

V = ~ v (i) (3.4) 
i: 

and the first-order wavefunction ~/(~) can be written as 
2/ 2/ 

T(1) = ~ d 1~ ~o) (]) ~1) (i) (3.5) 
~=1 t r  

where d is the antisymmetrizing operator and ~0~ 1) (i) is the first-order perturba- 
tion correction to ~0) (i). Eq. (3.3) then separates into a set of uncoupled one- 
electron equations 

(E (i) - w~0)) ~ , )  + (v (i) - ~ 7  )) ~0) 
2/ 

- -  (W~" , § ( ~ i  ~ v ~ 0 ) } }  ~ 0 )  ( 3 . 6 )  

where F (i) is the unperturbed one-electron Hartree-Fock operator for electron i, 
w~ ~ is the unperturbed Hartree-Fock orbital energy and w~ ~) is the first-order 
orbital energy. 

A variational approximation to the solution of Eq. (3.6) can be obtained by 
minimizing the functional 

~ 2 )  : ( ~ 1 ) ,  (A ~ __ W~0)) ~ 1 ) ~  ~_ < ~ 1 )  (V - -  W~ 1)) ~)~0)~ ~_ 

- -  - -  - -  ( ~ i  , ~ 0 ) }  i ~ §  ( 3 . 7 )  

I f  we substitute 
N 

(1) ~i = ~0)/i (3.8) 

into Eq. (3.7) and neglect the contribution from the nonlocal potential of F (i) in 
the first term in Eq. (3.7) [10] we obtain 

; 7  > = -~ <~~ I v ~ l' ~~ + <~0>, (v - w7 >) (~* + i~) ~~ - 

_ ~ ((w~O,_ wT,)i <v~0>, ~, ~0)~ ],+ (3.9) 

This equation only involves one-electron integrals and will be used in the following 
section. 
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IV. Treatment of CO Based on N e 

1. Electronic potential energy curves 

Let T [  ~ and W(~ ~ be the wave function and the electronic energy for the lowest 
~+ state of N~ which dissociates to N atoms in ground 4S states, and W~0) and W(2 ~ 

be those for the 1 ~+ state of N 2 which dissociates to the ions, N+ and N-,  in ground 
ap  states. Then using the ionization potential [ld] and electron affinity [5] of the 
N atom, we obtain 

W~ ~ (co) -- Wi ~ (o~) = (I.P. of N) - (E. A. of N) 

= ( t 4 . 5 4  - 0 .05)  e V  (4.1) 

= 14.49 eV 

0.5325 H .  

Similarly let W1 and W 1 be the wave function and the electronic energy of the 
lowest 1 ~+ state of CO which dissociates to atoms C and 0 in ap  states, and ~2 
and W e be those for the 1 ~+ state which dissociates to ions C- and 0 + in 4S states. 
Then using the ionization potential [14] of the 0 atom, and the electron affinity 
[5] of the C atom we obtain 

W~ (c~) - W~ ( ~ )  = (I. P. of 0) - (E. A. of C) 

= (13.6i - i .12)cV (4.2) 

= 12.49 eV 

= 0.4590 H .  

From the electronic energies of N, C- and 0 + which are computed from ionization 
potentials [14] the energy difference of 2 N - (C- + 0 +) is 

W(~ ~ (c~) -- W~ (c~) = {(I. Ps. of O +) + (I. Ps. of C) + (E. A. of C)} - 2 (I.Ps. of N) 

= {2029.66 + 1029.81 + 1.12} -- 2 x 1485.65 eV 

= 89.29 eV (4.3) 

= 3.281 II. 

This is to be compared with the value calculated by  Eq. (A.6) in the Appendix 

W(~ ~ (c~) - W~ (c~) ~ ~._~ = 3.250ti  (4.4) 
, l = l  nt 

which agrees well with the empirical value [Eq. (4.3)]. 
The energy difference between C + 0 atoms and N + N atoms (ground states) 

has been calculated using the l/Z-expansion through the first-order. The result, 
W(1 ~ (oc) - W 1 (oc) ~ 2.85 H, is to be compared with the empirical value, 3.74 H, 
computed using the ionization potential [14] of each electron of N, C and 0 atoms. 
The poor agreement shows tha t  higher order terms should be included in the 
i/Z-expansions of the electronic energies of the atoms. 

The electronic energies as functions of the internuclear separation R are 
shown schematically as in Fig. t. 

2. Schwartz discriminant 

The object of this section is to check the inequality Eq. (2.27b). To find 
AW (R0)= W 1 ( R 0 ) -  W[ ~ (R0)where R 0 is the equilibrium internuclear distance 
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of N~, we expand the molecular energy of CO, E 1 (JR), which is the sum of the 
electrorfic energy and the internuclear repulsion energy, about the equilibrium 
internuclear distance, Re 

[d2 El~ 
E~ (JR) = E~ (iRe) + �89 (JR - JR~)~ \ ~ - ~ / ~  + . . .  (4.5) 

where (d 2 E1/djR2)e -- lee is the force constant for CO. Also we note that  

E?)  (jR0) = - D?) + E ? ) ( ~ )  (4.6) 

E~ (iRe) = - D1 + E~ (o+) 

w~ //-+ 

IcY) 

sg, zg 

0 oo 

R 
Fig. 1. Schematic plot of the empirical electronic energy W(R) against the internuclear separation /~ for relevant 

states of CO and 572 

where D(1 ~ and D 1 are the dissociation energies of N2 and CO. Using Eqs. (4.5) and 
(4.6), we obtain 

- A W  (JR~) _- (D1 - b ? ) )  + {E(~ ~ (++) - E1 ( ~ ) }  + 

§ (Zc Z o - - Z ~ ) / R  o -- (R o - Re) 2 ICe~2 (4.7) 

where Z~, Zc  and Zo are the nuclear charges of N, C and O. By making use of the 
necessary molecular constants given in Tab. l, we obtain 

AW (R0) ~ -- 3.3 H .  (4.8) 

Since <#} = - 0.t.5 Debye [9] and a = 23.8 • l0 -25 em a [13], we get 

(4 Z~ R 0 - </z))2/(2 c~) ~ 0.t3 H .  (4.9) 

The inequality (2.27b) becomes 3.3 _> 0.t3, and is thus easily satisfied for the case 
of N+= and CO. The use of the leading terms in the perturbation expansions is 
therefore not in conflict with the Schwartz inequality. 

3. Correlation o/ the electronic states and degeneracy 

The proposed perturbation treatment in Section I I  expands the wavefunction 
W1 and energy W1 (R) for the lowest state of CO about those for the lowest state 
of N~, namely T(o) and W(~ ~ (R), in powers of ,~ = ( Z A -  ZB)/(ZA § ZB). The 
expansions are given in Eqs. (2.5) and (2.6). However, the treatment in Section I I  



A Perturbation Theory of Isoelectronic Molecules: CO Based on Na 401 

overlooks the following difficulty: the electronic states of CO and Ne which are 
related by the perturbation theory must be "adiabatically correlated" in the sense 
that  if ~ were reduced from ~ to 0 the states must become identical. 

When the atoms are separated at R .- co we know that  in fact the state C + 0 
is correlated with N + q- N-,  and the state N + N is correlated with C- q- 0 +. 
That is : 

lim lira T~ = T~ ~ (4.10) 

although 
lim ~ = ~(o). (4.il) 
2,-->0 

(R~no) 

When R -= 0 at the united atom (Si) the energies are independent of ~ since the 
nuclei are united, and only the total charge Z ( = 14) matters. The correlations of 
the states are shown schematically in Fig. 2. 

h/ 

N + + I ~  - 

G+0 

A 2~ 
a b 

Fig.  2. Correlat ion of the electronic s~ates, a) R -- 0% b) R ~ R0 

To check the applicability of the proposed perturbation theory, we consider 
the crossing point of the two states. At the limit as R~  oo, the separated ions 
N + and N -  are in different ground 3p states and there exist four degenerate 1X+ 
states [7] which are coupled by the perturbation V. Hence degenerate perturbation 
theory must be applied. Suppose that  the four 1~+ states of N + + N -  can be 
described by the orthonormal wave functions ~1 (ct, b), ~Pl (b, a), ~ (a, b) and 
~02 (b, a) where ~s I (b, a) and ~s 2 (b, a) are obtained from q% (a, b) and ~2 (a, b) by 
interchanging nitrogen nuclei A and B. From these four wave functions, we can 
construct two symmetric wave functions and two antisymmetric wave functions; 

1 
~1~ = -r {~1 (a, b) + ~1 (b, a)} 

1 
~ g  = ~ {~  (a, b) + ~ (b, a)} 

1 

1 
~ = ~ { ~  (~, b) - ~ (b, ~ ) } .  



402 TAz Yvr Cm~NG and W. BREWS B~ow~: 

Since the per turbat ion V has u - symmet ry  the secular equation is given by  

- W(1) 0 V~s V14 
0 - W (1) V~s Vea 
Val V~2 - W(1) 0 = 0 (4.t3) 

V41 V42 0 - W (1) 

where Vii = <~f~, V~j) .  B y  solving Eq. (4.13) we can obtain the lowest first-order 
energy W~ 1). 

On the other hand, the separated atoms N + N are in the same aS state at  the 
limit as R -* 0% and can be t rea ted  as a non-degenerate case since only one 1 ~+ 
state exists. Hence in general we shall have 

w1 (co) = w~ ~ (~)  + ;~e w(?)(~) + . . . ,  (4.t4a) 

W e (co) -- W(2 ~ (ec) q- 2 W~ ~) (cxD) + . . -  . (4A4b) 

Therefore the approximate  crossing point  at  R = co is 

AW(~ (~ )  (4.15) ~c (R = ~ )  _~ - w(~) (~) 

Since the denominator  in Eq. (4.15) is the first order energy coefficient, 2c (R =- c~) 
m a y  be smaller than  ~, (see Fig. 3a). 

iV 

] 
] 
J 

0 )~c ~/r 

90 

iV 

I 

i 
I 
I 

~/z ,Z,c 
2 
b 

Fig. 3. Schematic plot of She electronic energy W against  the perturbation parameter  ,t. 1~ 1 and 1~  are given by 

Eqs. (4.18a) and (4.18b). a) R = c o ,  b) /~ ~ R0 

When  R is near the equilibrium internuclear separation of  N2, R 0, we approxi- 
mate  the two states of  CO as follows : 

~e = ~(o)+ a ~g) (4.16) 
where }P1 (~) and ~r](1) are the solutions of  the first-order per turbat ion  equations 

(3f ,  ~ _ W~0)) }p(1) _~ V ~ 0 )  = 0 ,  i = 1, 2 .  (4 .17)  
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Then since W(~) = W~)= 0 and Wla)= W~a)= 0 due to u-symmetry of V, we 

have 2e W(2) 

;~2 WT) (4.18b) 

where S~ = \/T~ 7J~(~)> and Sz = (T~), 7J~)}. I f  we put  1~ = 1~ and neglect Z ~ 
terms in denominators, we obtain the approximate crossing point 

V'  w,o, (4 9> 
where AW(~ = W(~ ~ - W(~ ~ and AW(~) = W(~ 2) - W(~ 2). Note that  2c is real only if 
AW(~ AW(2) < 0, which is in fact the case. Since it appears that  } AW(~ ] > lAW(Z) 1 
(see Fig. 3b), we assume that  2c >> ~. 

Hence we conclude that  the proposed perturbation theory may be applied when 
R is not too large. 

4. Calculation o/ second-order energy and dipole moment 

Variational solutions of the first-order Eq. (3.6) have been obtained by means 
of Eq. (3.9), and used to calculate the second-order energy and dipole moment. 
Two sets of approximate Hartree-Fock molecular orbitals for N 2 were employed : 
I. NESBET'S molecular wavefunctions [15] and 2. X~AI~SIL'S best limited LCAO-MO 

[17]. For the functions ~, four- and seven-term polynomials were employed: 

~ 4 Zo 
1~ - R (ai l  V + ai2 @ + aia U ~  + a~4 73) (4.20a) 

and 
~ 4 Z 0 ~2 ~a 

~ =/is ~ (ai~ ~V a § ai6 § a~7 ~15) (4.20b) 

where ~ and ~ are prolate spheroidal coordinates defined by 
rA + rB r A -  rB 

R ' ~ = R-~" (4.21) 

The variational coefficients a~j, in Eqs. (4.20a) and (4.20b) were determined by 
minimizing the functional (3.9). 

I t  should be noticed that  the operators v and # have u-symmetry, and therefore 

the functions ~ should also have u-symmetry. Hence the integrals <~p~, v ~fll} and 
(~pi, # ~j> vanish unless the spatial functions ~p~ and ~pj have different inversion 
symmetry. Furthermore, the required molecular integrals 

~m v~ , 

and 

where Z and 7~' are Slater-type A0 's  centered at atom A or B, are easily expressed 
in terms of the auxiliary functions 

1 

+ 1  

BnIt) = .t e-t" vn &] " (4.22) 
1 
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Table 2. Calculated energy (Hartrees) and dipole moment (a. u.) of CO 

R(B)  1.868 ~ 2.068 r 2.268 ~ 2.068 a 

E(~ --108.94320 --108.97143 --108.92938 --108.63359 
~W(2) ~ - -  5.833 - -  6.727 - -  7.889 - -  6.724 

- -  5.877 --  6.776 - -  7.952 - -  6.789 
--I /R - -  0.535 - -  0.484 - -  0.441 - -  0.484 
E a --115.3tl  --t16.182 --1t7.259 --115.842 

b --115.355 --116.231 --117.322 -Mt5.907 
(#}~ ~ - -  5.966 - -  9.436 - -  14.363 - -  12.607 

b - -  6.064 --  9.562 --  t4.554 - 12.767 

Four-term perturbation polynomial was used [Eq. (4.20a)]. 
b Seven-term perturbation polynomial was used [Eq. (4.20b)]. 

NES~ET'S [15] molecular wavefunction for N 2 was used. 
a RA~SIL'S best limited LCAO-MO [17] was used. 
e Dipole moment  was defined as negative for C + 0 - .  (See Section II.4). 

Table 3. Energy (Hartrees) and dipole moment (a.u.) o/NES/~ET'S [15] molecular wave/unction 
/or CO 

R(B)  1.808393 1.932 2.132 2.323 2.455607 

E --112.66220 --112.72952 --1t2.75878 --112.73211 --112.70106 
(#} 0.0830 - -  0.0032 - -  0.t562 - -  0.3246 - -  0.4342 

Table 4. Expansion coe//icients in the perturbation polynomial and orbital contributions to the 
second-order energy and dipole moment/or R = 2.068. Zeroth.order wave/unction is NESBET'S [15] 

molecular wave/unction/or N~ 
Coefficients i n / ~  [four-term perturbation polynomial, Eq. (4.20a)] 

Orbital aa  a,2 a,a a,~ wd0~ (t'I) ~2 Wi(~) (I-I) ~//~(1) (a,u,) 

l a g  --t.2346 0.5160 0.0296 0.0367 --15.69623 --0.4875 --0.0020 
2ag --0.8774 0A152 0.0406 0.t250 - -  t.48569 --0.3250 ~0A279 
3ag --t .0078 0.3561 --0.0t31 --0.0291 - -  0.64278 --0.2378 --0.0511 
I ~ --1.1463 0.5007 0.0369 0.0043 --15.69262 --0.4721 +0.0008 
2 au --1.0249 0.3575 --0.0042 --0.0445 --0.78581 --0.2257 +0.0771 
I ~ --1.7743 0.1897 --0.0250 0.4672 - -  0.62261 --0.8078 --1.3864 

The  c a l c u l a t e d  r e su l t s  o f  t h e  s e c o n d - o r d e r  en e rg y ,  m o l e c u l a r  e n e r g y  a n d  d ipo le  

m o m e n t  are  g i v e n  in  Tab .  2. To  c o m p a r e  t h e  p r e s e n t  r e su l t s  w i t h  t h o s e  of  a d i r ec t  

I t a r t r e e - F o c k  ca lcu la t ion ,  t h e  m o l e c u l a r  e n e r g y  a n d  d ipo le  m o m e n t  o f  N ~ s ~ T ' s  

[15] m o l e c u l a r  w a v e f u n c t i o n  fo r  CO are s h o w n  in  Tab .  3. To f u r t h e r  s h o w  t h e  

d e p e n d e n c e  o f  t h e  s e c o n d - o r d e r  e n e r g y  a n d  d ipo le  m o m e n t  on  t h e  choice  o f  t r i a l  

f u n c t i o n s  ~,  t h e  coef f ic ien ts  i n  t h e  f o u r - t e r m  p e r t u r b a t i o n  p o l y n o m i a l s  [Eq.  (4.20a)], 

a n d  also t h e  o rb i t a l  c o n t r i b u t i o n s  t o  t h e  s e c o n d - o r d e r  e n e r g y  a n d  d ipo le  m o m e n t ,  

are  g i v e n  in  Tab .  4. 

T h e  r e su l t s  for  R = 2.068 B us ing  I~A~SIL'S [17] a n d  N~SBET'S [15] m o l e c u l a r  

w a v e f u n c t i o n s  fo r  N 2 as z e r o t h - o r d e r  w a v e f u n c $ i o n  s h o w  t h a t  t h e  m o l e c u l a r  

p r o p e r t i e s  in  t h i s  c a l c u l a t i o n  are  n o t  v e r y  s ens i t i ve  t o  t h e  choice  o f  z e r o t h - o r d e r  

w a v e f u n c t i o n  (see Tab .  2). 
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The calculated molecular energy of CO is too low by 2.0 ~ 6.0 H in the given 
range of R and decreases too fast as R becomes larger, (See Tab. 2 and 3). Hence 
the calculated molecular energy does not give a minimum in the range of R 
investigated as implied by  Eq. (2A2). 

The calculated dipole moment of CO is ridiculously large in magnitude com- 
pared with the results of Hartree-Fock calculations [15, 9] and the experimental 
value [1]. The large magnitude of the dipole moment is mainly due to the abnor- 
mally large contribution from the t zu orbital. 

V. Discussion 

The present quantitative results of this theory for the isoelectronic molecules 
Nz and CO are disappointing. The calculated molecular energy of CO is too low and 
does not give a minimum in the given range of internuclear separation R. I t  is 
shown, however, that  the polarity of the electric dipole moment of CO agrees with 
the results of recent Hartree-Fock calculations [15, 9] at the equilibrium separa- 
tion, although the magnitude is too large. I t  should be noticed that  the SCF- 
LCAO-MO approximation to the Hartree-Fock solution of N 2 was employed for 
zeroth-order wavefunction, and the uncoupled Hartree-Fock approximation was 
used to determine the second-order energy and the f irstorder wavefunction. The 
use of the coupled Hartree-Fock approximation might improve the result. 

I t  is interesting to note tha t  the molecular energy difference AE = Eco - E~ 2 
may be obtained directly by means of the integral Hellmann-Feynman theorem 
formulated by  KIM and PA~u [12]. In this case the theorem takes the form 

<~oo, ~ v ~ 2 )  (5A) 
A E  = - ~ Z ~ / R  + <~oo, ~.~> 

where the first term is the nuclear-nuclear repulsion energy difference and Woo 
and ~ may be approximated by Hartree-Fock wavefunctions for CO and N 2. 
The advantage of Eq. (5A) is that  it is valid whether or not ~V is small. I f  the 
right hand side of Eq. (5A) is expanded in powers of A, it reduces to the perturba- 
tion series, Eq. (2.9). 

A related perturbation treatment for acetylene based on the isoelectronic 
molecule ~T 2 has been performed by GILSO~ and A~E~TS [6]. However, in this case 
the first-order energy does not vanish, and it alone was calculated. The error 
involved was about twice that  in the present paper, but  in the opposite direction. 

The significance of the present theory is that  it provides a method of comparing 
the properties of iso-electronic molecules by a perturbation procedure. The 
perturbation operator [see Eq. (2.4)] has u-symmetry and is a sum of one-electron 
operators. The symmetry feature of the perturbation operator simplifies the actual 
calculation of the energy and other molecular properties for diatomie molecules, as 
shown in Section IV, 4. The one-electron character of this operator allows the use of 
the well-developed theory of the one-electron perturbation effect. (Cf. Section III.) 

The theory might be extended to polyatomic molecules and crystals. For 
example, borazine, B3N~H6, might be treated with benzene, C6I~I~, as the unper- 
turbed system, and borazon, (BN)~, with diamond as the unperturbed system. 
For these eases, )~ = (ZN - Z B ) / ( Z ~  § ZB) = ~. On the other hand, the diatomic 
molecule BF, with N 2 as the unperturbed system, would have ~ = -~ which is 
probably too large for the theory to work. 
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Appendix  

Energy difference/or separated atoms 

The electronic energy  difference a t  the  infini te in te rnuc lea r  separat ion,  
[W (c~)~- W(~ (c~)], can be eas i ly  compu ted  using the  l/Z-expansion for the  
a tomic  energies. F o r  an a tom wi th  nuclear  charge Z o and  N electrons,  the  elec- 
t ronic  energy can be e x p a n d e d  as follows 

(So, ~ )  = Zo ~ ~(o)(;v) + So ~(~)(~v) + ~(~)(iv) + ~(~)(;v)/Zo + e (l/zo~). (A.i) 

F o r  the  pe r tu rbed  condit ion,  t h a t  is, an a tom wi th  nuclear  charge Z o (1 + ~) and  
an  a tom with  nuclear  charge Z 0 ( l  --  ~), the  t o t a l  energy is 

w (~)  = # [Zo (l + ~), N] + # [z o (l - ~), N] 
= 2 {zo ~ ~(o)(N) + so ~(~)(N) + ~(~)(~v) + ~(~)(~v)/zo + - . .}  + (A.2) 
+ 2 ~ {Z~ ~(0)(N) + ~(~)(N)/Zo + -. .} + 2 ~ {~(~)(N)/Zo + . . . } .  

Since W(~ (c~) = 2 # (Z0, iV), the  energy difference is g iven b y  

W ( ~ )  - W(~ (co) = 2 ~ {Z~ ~(o)(N)q- a(a)(N)/Zo + . . . }  § (9 (~4). (A.3) 

Hence we ob ta in  

w(~) (co) = 2 {Zo ~ ~(o)(N) + ~(~)(N)/Zo + e (l/Zo~)}. (A.4) 

The in te res t ing  fea ture  is t h a t  W(2) ( ~ )  contains  ne i ther  the  average  repuls ion 
t e rm  s0)(A r) nor  the  second order  t e rm  ~(~)(Ar). The th i rd  order  t e rm  ~(a)(N) is 
expec ted  to  be ve ry  much  smal ler  t h a n  s(~ I f  the  i th  e lec t ron in a hydrogen ic  
o rb i t a l  has  pr inc ipa l  q u a n t u m  number  n~, t hen  

~(0)(~v) �89 ~ 1 = .~  (A.5) 

Note  t h a t  i f  ZA = Z o + I and  Z s = Z 0 - l ,  SO that 2 Z 0 = ~, then  

(ZA, N) § d ~ (ZB, N) -- 2 ~ (Z o, N)  ~- -- ~ ~ . (A.6) 

This corresponds to  the  energy difference be tween  the  ion pa i r  A+ + B -  and  two 
neu t ra l  a toms,  C, each hav ing  N electrons.  
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